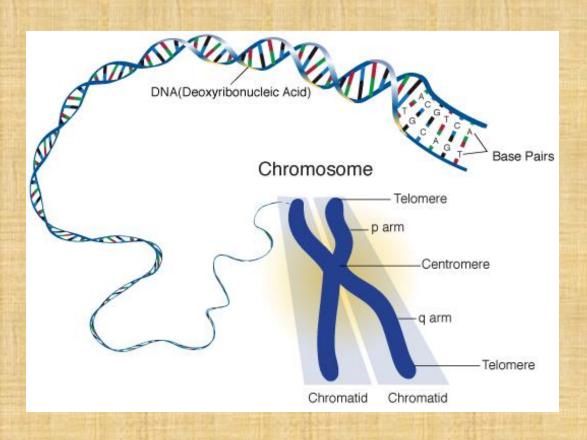
التطور الكبير الجزء العشرين وعم

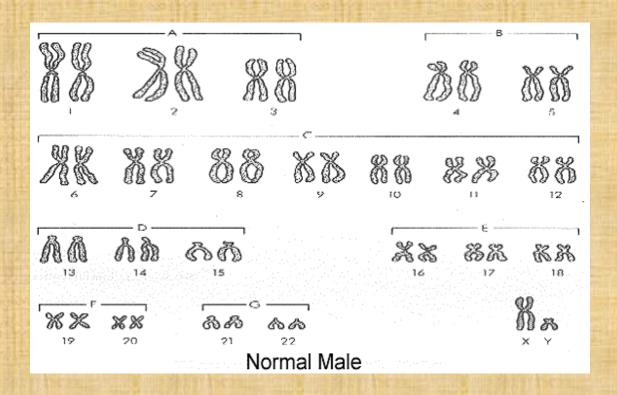
انقسام او التحام الكروموزومات

Holy_bible_1

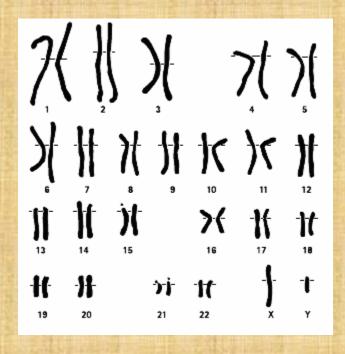
تكلمت عن عدد الكروموزومات في الجزء السابق التي اتضحت جليا انها تشهد على خطأ فرضية التطور لان لو التطور حدث لكنا يجب ان نجد عدد الكروموزومات يزيد في الكائنات الحديثة الأكثر تطور ولكن هذا غير صحيح فوجدنا نباتات عشبية بسيطة وفطريات وكائنات صغيرة أكثر عدد كروموزومات بكثير جدا عن الثدييات الحديثة المعقدة

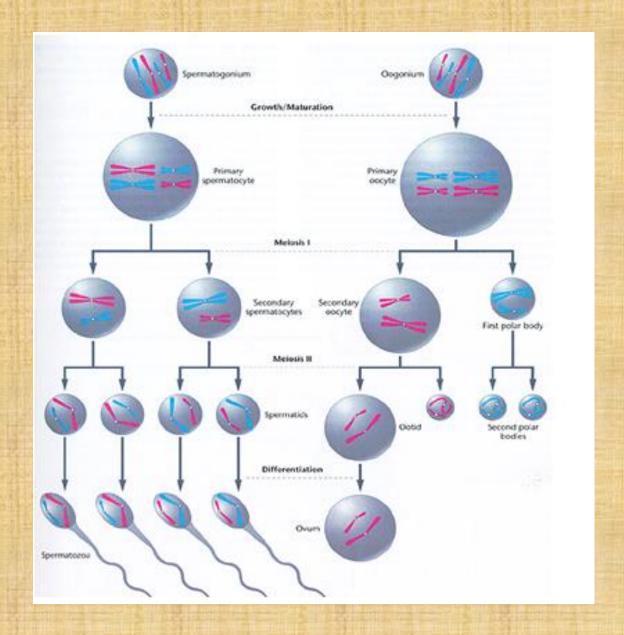

وأيضا لو التطور صحيح الاجناس التي أتت من جد مشترك لكان يجب ان تكون لها نفس عدد الكروموزومات او متشابهة ولكن هذا غير صحيح ودرسناه بشيء من التفصيل مثل الفاران التي مفترض انها من جد مشترك ولكن الفار الأحمر كان 102 كروموزوم والفار المائي 92 والفار 42 كروموزوم أكد عدم وجود لا جد مشترك ولا تطور.

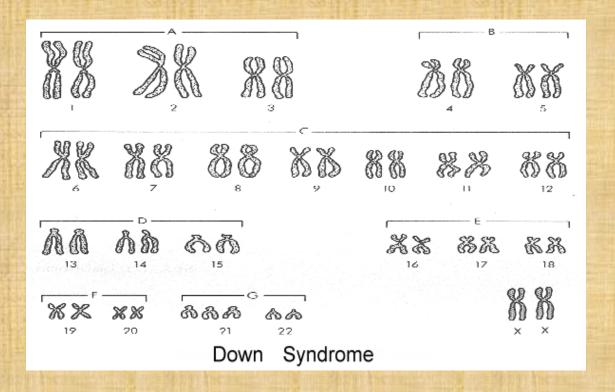
ولكن ندرس امر اخر الان باختصار وهو هل بالفعل الكروموزومات تنقسم فيزيد عدد كروموزومات الحفاد؟


هذا غير صحيح وسندرسه باختصار الان ولكن سندرسه مرة أخرى بأكثر تفصيل عند دراسة هل الانسان والقردة من جد مشترك.

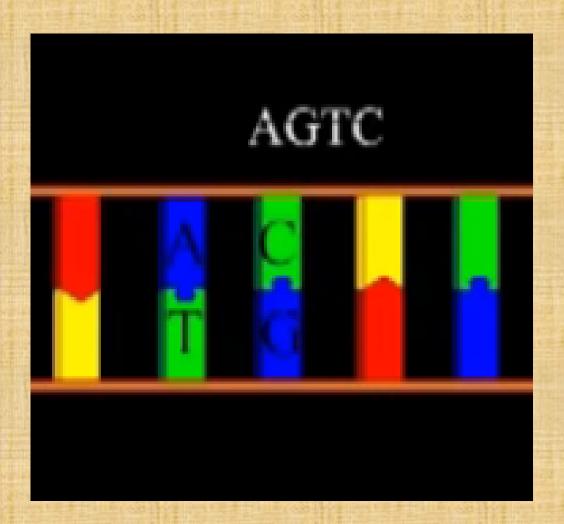
عدد الكروموزومات هام جدا اثناء انقسام الخلية سواء ميتوزي او ميوزي واثناء تكوين زيجوت ولو كان هناك خطأ في عدد الكروموزومات او مخالفة يحدث مشاكل في تكوين الجنين

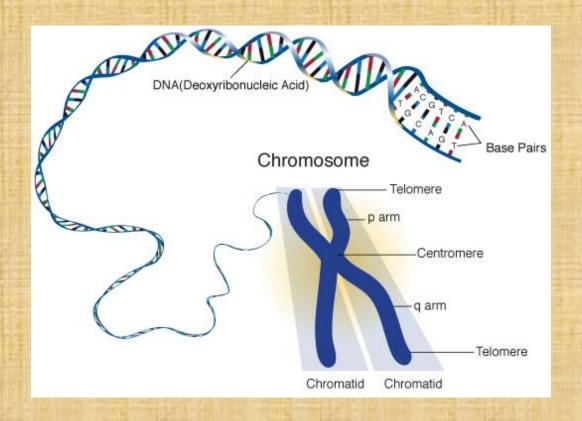

لان الكروموزومات كما في الصورة التالية


هي مزدوجة مثل الانسان 46 على شكل ازواج أي 23 DIPLOID


اثناء الانقسام كل زوجي كروموزوم ينفصلون HAPLOID

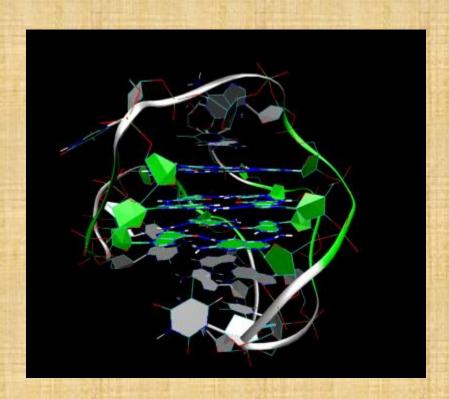
وكل مفرد يذهبون الى طرف الخلية وتنقسم الى اثنين وتمر بمراحل الانقسام الميوزي


وعند اتحاد الخلايا التناسلية يرجعوا يتحدوا مرة ثانية DIPLOID. لو حدث خطأ اثناء الانقسام هو يحدث خطأ في اخذ كرموزوم كامل بسبب ان الكروموزومين لم ينفصلوا عن بعض كمثال دون


ويسمى aberrant euploids أي كروموزوم كامل يزيد Polyploids وهذا دائما يكون عقيم بسبب هذه المشكلة ولكن صعب ان ينقطع كروموزوم الي نصفين ويصبح كل منهم كروموزوم كامل ويورث. هذا لا يحدث.

للتوضيح لماذا لا يحدث لان الكروموزوم تركيبه يمنع هذا فالكروموزوم ممكن يتم استبدال جزء اثناء انقسام الخلية وهو Chromosomal crossover ولكن الكروموزوم لا ينقسم لاثنين او كروموزوم يتحدوا معا ويكونوا كروموزوم واحد طويل. هذا ثبت انه لا يحدث ولا يصلح اثناء التكاثر التزاوجي

ونعرف ان الكروموزوم هو اصلا مكون من اكود حروفها اربعة وهي


وتوضع معا في شريط طويل جدا مزدوج

في نهاية الاطراف يوجد ترتيب طويل يسمي تلومير telomere وهو علامة لنهاية الشريط وهي عبارة عن تكرار الاف المرات لحروف مميزين فالفقاريات ست حروف TTAGGG عبارة عن تكرار الاف المرات لحروف مميزين فالفقاريات ست حروف ويكون شكل وهذا يكون مناسب ان يكون غلاف بروتيني في النهاية يحمى نهاية الكروموزوم. ويكون شكل الرباعي كقفل للكروموزوم لكيلا يحدث له أي تفاعل او تهدم

فهي مصممة بدقة لتحمي طرف الكروموزوم.

ورغم ان لو الكائنات كلها من مشترك كما ادعى دارون لكان يجب ان يكون كل حقيقيات النواة بها نفس التيلومير ولكن هذا غير صحيح فالتيلومير يختلف من شعبة الاخرى وشعب بعيدة عن بعضها متشابهة وشعب قريبة من بعضها مختلفة

Group	Organism	Telomeric repeat (5' to 3' toward the end)
Vertebrates	Human, mouse, Xenopus	TTAGGG
Filamentous fungi	Neurospora crassa	TTAGGG
Slime moulds	Physarum, Didymium	TTAGGG
	<i>Dictyostelium</i>	AG(1-8)
Kinetoplastid protozoa	Trypanosoma, Crithidia	TTAGGG
Ciliate protozoa	Tetrahymena, Glaucoma	TTGGGG
	Paramecium	TTGGG(T/G)

	Oxytricha, Stylonychia, Euplotes	TTTTGGGG
Apicomplexa n protozoa	Plasmodium	TTAGGG(T/C)
Higher plants	Arabidopsis thaliana	TTTAGGG
	Cestrum elegans	TTTTTTAGGG ^[41]
Green algae	Chlamydomonas	TTTTAGGG
Insects	Bombyx mori	TTAGG
Roundworms	Ascaris lumbricoides	TTAGGC
Fission <mark>yeasts</mark>	Schizosaccharomyce s pombe	TTAC(A)(C)G(1-8)
Budding	Saccharomyces cerevisiae	TGTGGGTGTGGTG (from RNA template) or G(2-3)(TG)(1-6)T (consensus)
<mark>yeasts</mark>	Saccharomyces TCTGGGTG castellii	
	Candida glabrata	GGGGTCTGGGTGCTG

	Candida albicans	GGTGTACGGATGTCTAACTTCTT
	Candida tropicalis	GGTGTA[C/A]GGATGTCACGATCAT T
	Candida maltosa	GGTGTACGGATGCAGACTCGCTT
	Candida guillermondii	GGTGTAC
	Candida pseudotropicalis	GGTGTACGGATTTGATTAGTTATGT
	Kluyveromyces lactis	GGTGTACGGATTTGATTAGGTATGT

فكما ترون الفطريات تتشابه مع الفقاريات ولكن ليس مع الخميرة وإجناس الخميرة الذين من مفترض من جد مشترك مختلفين تماما

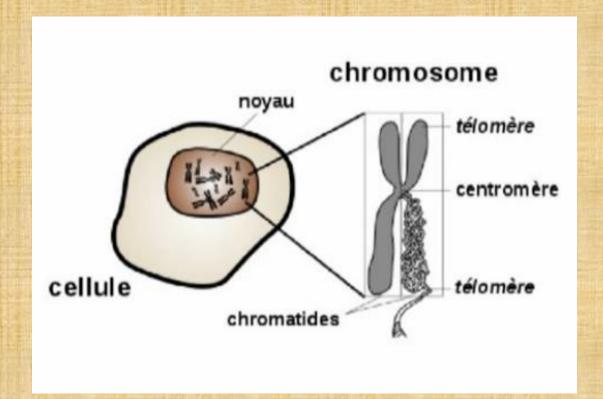
فهذا لوحده دليل على خطأ التطور ولكن هذا ليس موضوعنا

المهم هدف التيلومير هو ان يوقف انزيمات تضاعف الدي ان ايه ويمنع فقد اكواد جينية لكيلا يتدهور الدي ان ايه وأيضا يمنع الكروموزومات من الالتحام لتكون مميزة ولا تحدث لخبطة جينية ويقوم بهذا بكفاءة واضحة وهذا ينفي ادعاء التطور برمته لأنه يوضح ثبات عدد الكروموزومات في الاجناس. وهذا يشهد لان الاجناس صممت ولم تأتي نتيجة تطور ولكن نكمن

وهي اكواد مميزة لا توجد في منتصف الكروموزوم على الاطلاق ولكن في اطرافه فقط ويتكرر الكود ليكون طرفي بمقدار 10000 مرة الى 15000 كود

ACTAGCGACATATATAGCGCGCATGCTACTG
AGCACGATCGTAGGGCATCGATGCTACTAG
CGACATATATAGCGCGCATGCTACTGAGCA
CGATCGCATCGATGCTACTGAGCA
CGATCGCATCGATGCTACTGAGCACATATAT
AGCGCGCATGCTACTGAGCACATATAT
AGCGCGCATGCTACTGAGCACGATCGCATC
TTAGGGTTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGG

فلو التطور صحيح سنجد إشكالية في تفسير كيف ينقسم كروموزوم ونجد في الكروموزومين الكواموزومين الكواد نهائية من طرف ولا توجد في الطرف الثاني وهذا لم نجده بل لا يصلح أصلا لان هذا يجعل الكروموزومين عرضة للتلف السريع


وأيضا لو الاجناس التي مفترض انها اعلى في التطور ولكن اقل عدد في الكروموزومات لو كانت نتيجة اتحاد كروموزومين معا (رغم ان هذا ضد التطور اصلا) ليجب ان نجد ان في منتصف كروموزوم من كروموزومات الكائن الاعلى هذه الاكواد النهائية التي كان يجب ان تكون في نهاية

CGATCGCATCGATGCTACTAGCGACATATAT
AGCGCGCATGCTACTGAGCACGATCGCATC
TTAGGGTTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGTTAGGGTTAGGGTTAGGG
TTAGGGACTAGCGACATATATATAGCGCCCATG
CTACTGAGCACATATATATAGCGCCCATGCTACT

ولكن هذا ليس له وجود مما يؤكد ان الاجناس ثابتة بعدد كروموزوماتها. بل لو زاد عدد اكواد التيلومير الطرفي يسبب سرطان.

وايضا امر اخر مهم وهو ان في اكواد الكروموزوم يوجد دائما في منتصفه اكواد تسمي سنترومير centromere

وهو مركز التحام زوج الكروماتيد

ويجب ان يكون واحد فقط في الكروموزوم. ولكن لو كروموزوم انقسم لاثنين سيكون في أحدهم مركز والثاني لا يوجد وهذا كارثة للخلية لان الكروموزومين لن ترابطوا وسيكون مشكلة في الانقسام وبالطبع ينتهي الكائن ولن يتطور.

ولو كان كروموزوم ناتج عن التصاق اثنين نتوقع ان يوجد به اثنين من اكواد السنترومير او على الاقل بقايا تثبت وجوده سابقا

لا يوجد حالة واحدة مسجلة في الحيوانات وهو اتحاد كروموزومين بوجود 2 تيلومر او 2 اكواد طرفية او 2 سنترومير او اكواد وسطية

ولا يوجد حالة واحدة لا يوجد بها تيلومير او سنترومير بل هذا لا يصلح أصلا

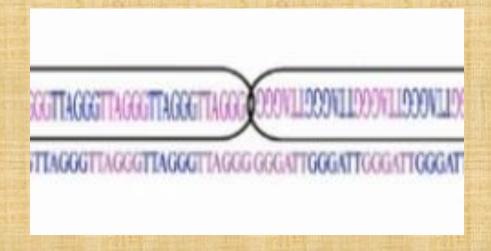
بل السنترومير ليس في المركز بالضبط ولكن له وضع مميز في كل كروموزوم مثل الانسان

Chromosome	Centromere position (Mbp)		Chromosome Size (Mbp)
1	125.0	metacentric	247.2
2	93.3	submetacentric	242.8
3	91.0	metacentric	199.4
4	50.4	submetacentric	191.3
5	48.4	submetacentric	180.8
6	61.0	submetacentric	170.9
7	59.9	submetacentric	158.8
8	45.6	submetacentric	146.3
9	49.0	submetacentric	140.4
10	40.2	submetacentric	135.4
11	53.7	submetacentric	134.5
12	35.8	submetacentric	132.3
13	17.9	acrocentric	114.1
14	17.6	acrocentric	106.3

15	19.0	acrocentric	100.3
16	36.6	metacentric	88.8
17	24.0	submetacentric	78.7
18	17.2	submetacentric	76.1
19	26.5	metacentric	63.8
20	27.5	metacentric	62.4
21	13.2	acrocentric	46.9
22	14.7	acrocentric	49.5
X	60.6	submetacentric	154.9
Y	12.5	acrocentric	57.7

فهو لا يصلح أصلا ان ينقسم الكروموزوم بهذه الطريقة

وهذا أيضا يثبت خطا التطور الختلاف عدد الكروموزومات ومكان السنترومير


ولو كان التطور صحيح لكنا وجدنا كل الكائنات لها كروموزوم واحد لصعوبة موضوع

السنترومير.

عندما يأتي 2 كروموزوم مقطوعين يتحدوا يكونوا شيء يسمى جزء ستالايت كل منهما او ممكن طرفي تيلومير مع ستلايت ولكن لا يتحد اثنين تيلومير معا

Known Fusions in Living Mammals Always involve satellite DNA				
	Satellite DNA	Satellite DNA		
	Telomere DNA	Satellite DNA		
	To lere Div.	Telomere		

والدليل الاخر وهو لو التحم طرفي كروموزوم نتوقع ان نري الاكواد تأتي في المنتصف وتصبح مقلوبة في الطرف الاخر

وبخاصة ليحدث هذا يجب ان يحدث في اثنين كروماتيد في نفس الكروموزوم ويحث في 2 كروموزوم ليكونوا متشابهين في ازواج أي ليس فقط في دي ان ايه واحد بل 4 كروماتيد رغم انه لا يحدث في كروماتيد واحد

والامر الاخر لو التطور ينتج كروموزومات أكثر كنا نتوقع ان الكائن نتيجة التطور يحتوي على كروموزومين يشبهوا الأصلي قبل انقسامه في الجد ولكن لم يوجد هذا

او العكس لو كان ممكن يحدث اتحاد كروموزومات في جنس جديد فيكون اقل من جده في اثنين الكروموزومات رغم انه ضد التطور ولكن هذا لم يحدث.

إذا بناء على هذا فان فرضية التطور بجملتها خطأ ومن يرفض ما أقول ارجوا منه ان يقدم دليل عكسي.

والمجد لله دائما